Эти требования включают в себя полноту (возможность вывести из системы аксиом всё содержание теории), непротиворечивость (отсутствие в теории утверждений, выводимых из аксиом и противоречащих друг другу) и независимость (невозможность вывести какую-либо аксиому из других аксиом этой теории).
Первые результаты в этой области принес метод интерпретаций. Данный метод заключается в следующем: пусть каждому исходному понятию и отношению данной аксиоматической теории T поставлен в соответствие некоторый конкретный математический объект. Совокупность таких объектов называется полем интерпретации. Всякому утверждению теории T естественным образом ставиться в соответствие некоторое высказывание
об элементах поля интерпретации, которое может быть истинным или ложным. Тогда говорят, что утверждение
теории T составлено истинно или ложно в данной интерпретации. Поле интерпретации и его свойство обычно сами являются объектом рассмотрения какой – либо математической теории T
, которая, также, может быть аксиоматической.
Слабая сторона метода интерпретаций состоит в то, что в вопросах непротиворечивости и независимости систем аксиом он дает возможность получить только результаты, носящие относительный характер. Важным достижением этого метода стало выявление особой роли арифметики как такой математической теории, к вопросу о непротиворечивости которой сводится аналогичный вопрос для целого ряда других теорий.
Дальнейшее развитие аксиоматический метод получил в работах Д. Гильберта и его школы. В рамках этого направления было выработано дальнейшее уточнение понятия аксиоматической теории, а именно понятие формальной системы. В результате этого уточнения оказалось возможным представить сами математические теории как точные математические объекты и строить их общую теорию, или метатеорию, таких теорий. При этом соблазнительной представлялась перспектива решить на этом пути главные вопросы обоснования математики. Всякая формальная система строится как точно очерченный класс выражений - формул, в котором некоторым точным образом выявляется подкласс формул, называемых теоремами данной формальной системы. При этом формулы формальной системы не несут в себе никакого содержательного смысла; их можно строить из произвольных знаков или элементарных символов, руководствуясь только соображениями технического удобства. На самом деле, способ построения формул и понятия теоремы, той или иной формальной системы, выбираются с таким расчетом, чтобы весь этот формальный аппарат можно было применить для возможно более адекватного и полного выражения той или иной конкретной математической (или не математической) теории. Всякую конкретную математическую теорию T перевести на язык подходящей формальной системы S таким образом, что каждое осмысленное (ложное или истинное) предложение теории T выражается некоторой формальной системы S. Такой метод построения теории, Гильберт назвал методом формализации.
Другое о образовании:
Урок совершенствования знаний, умений и навыков
Основные дидактические задачи, которые решаются на этих уроках, в основном сводятся к следующим: а) систематизация и обобщение новых знаний; б) повторение и закрепление ранее усвоенных знаний; в) применение знаний на практике для углубления и расширения ранее усвоенных знаний; г) формирование умени ...
Соли аммония
Соли аммония – сложные вещества, в состав которых входят катионы аммония NH4+, связанные с кислотным остатком. Физические свойства Кристаллические вещества, хорошо растворимые в воде. Получение Аммиак (или гидроксид аммония) + кислота. NH3 + HNO3 → NH4NO3(нитрат аммония) 2NH4OH + H2SO4 → ...
Основные направления и средства коррекционной работы по преодолению
двигательных нарушений при детском церебральном параличе
Основной задачей физического воспитания при ДЦП является укрепление общего здоровья ребенка. Наибольшее значение в этом имеет соблюдение режима, нормализация жизненно важных функций организма - питания и сна, закаливание, способствующее повышению устойчивое к простудным заболеваниям и нормализации ...